

    
      Navigation

      
        	
          index

        	
          modules |

        	OsmOApi 0.1 documentation 
 
      

    


    
      
          
            
  
Welcome to OsmOApi’s documentation!

OsmOApi is short for OpenStreetMap [https://www.openstreetmap.org/] OAuth [http://oauth.net/] API.

The authorization is not in the scope of this package, you can use python-social-auth [https://pypi.python.org/pypi/python-social-auth] for this

It takes a geo_interface [https://gist.github.com/2217756] compatible dictionary to create OSM Features.

Contents:








	
class osmoapi.ChangeSet(id=None, created_by='osmoapi v 0.1', comment='Changes via API', **kwargs)[source]

	Changesets.

http://wiki.openstreetmap.org/wiki/API_v0.6#Changesets_2

To make it easier to identify related changes the concept of changesets
is introduced. Every modification of the standard OSM elements has to
reference an open changeset. A changeset may contain tags just like the
other elements. A recommended tag for changesets is the key comment=*
with a short human readable description of the changes being made in that
changeset, similar to a commit message in a revision control system. A new
changeset can be opened at any time and a changeset may referenced from
multiple API calls. Because of this it can be closed manually as the server
can’t know when one changeset ends and another should begin.


	
etree_element()[source]

	Create a XML representation of this changeset.










	
class osmoapi.OSMOAuthAPI(client_key, client_secret, resource_owner_key, resource_owner_secret, test=True)[source]

	OSM API with OAuth.


	
close_changeset(changeset)[source]

	Close: PUT /api/0.6/changeset/#id/close.

http://wiki.openstreetmap.org/wiki/API_v0.6#Close:_PUT_.2Fapi.2F0.6.2Fchangeset.2F.23id.2Fclose

Closes a changeset. A changeset may already have been closed without
the owner issuing this API call. In this case an error code is returned.

Parameters:

id

The id of the changeset to close. The user issuing this API call has to
be the same that created the changeset.

Response

Nothing is returned upon successful closing of a changeset
(HTTP status code 200).






	
create_changeset(created_by, comment, **kwargs)[source]

	Create: PUT /api/0.6/changeset/create.

http://wiki.openstreetmap.org/wiki/API_v0.6#Create:_PUT_.2Fapi.2F0.6.2Fchangeset.2Fcreate

The payload of a changeset creation request has to be one or more
changeset elements optionally including an arbitrary number of tags.
Any number of possibly editor-specific, tags are allowed.
An editor might, for example, automatically include information about
which background image was used, or even a bit of internal state
information that will make it easier to revisit the changeset with
the same editor later, etc.

Clients should include a created_by=* tag.
Clients are advised to make sure that a comment=* is present,
which the user has entered. It is optional at the moment but this might
change in later API versions. Clients should not automatically generate
the comment tag, as this tag is for the end-user to describe their
changes. Clients may add any other tags as they see fit.






	
create_note(point, text)[source]

	Create a new note: Create: POST /api/0.6/notes

http://wiki.openstreetmap.org/wiki/API_v0.6#Create_a_new_note:_Create:_POST_.2Fapi.2F0.6.2Fnotes

URL: http://api.openstreetmap.org/api/0.6/notes?lat=51.00&lon=0.1&text=ThisIsANote
Return type: application/xml


Parameter  | Description | Allowed values |



|lat | Specifies the latitude of the bug  | floatingpoint number in degrees |
|lon | Specifies the longitude of the bug | floatingpoint number in degrees |
|text  |  A text field with arbitrary text containing the note |

If the request is made as an authenticated user, the note is associated to that user account.

Error codes
HTTP status code 400 (Bad Request)
if the text field was not present
HTTP status code 405 (Method Not Allowed)
If the request is not a HTTP POST request
HTTP status code 403
If the user did not authorize your application to create/edit notes.






	
diff_upload(change)[source]

	Diff upload: POST /api/0.6/changeset/#id/upload.

http://wiki.openstreetmap.org/wiki/API_v0.6#Diff_upload:_POST_.2Fapi.2F0.6.2Fchangeset.2F.23id.2Fupload

With this API call files in the OsmChange format can be uploaded to the
server. This is guaranteed to be running in a transaction. So either all
the changes are applied or none.

To upload an OSC file it has to conform to the OsmChange specification
with the following differences:

Each element must carry a changeset and a version attribute, except when
you are creating an element where the version is not required as the
server sets that for you. The changeset must be the same as the changeset
ID being uploaded to.
A <delete> block in the OsmChange document may have an if-unused
attribute (the value of which is ignored). If this attribute is present,
then the delete operation(s) in this block are conditional and will only
be executed if the object to be deleted is not used by another object.
Without the if-unused, such a situation would lead to an error, and the
whole diff upload would fail.
OsmChange documents generally have user and uid attributes on each
element. These are not required in the document uploaded to the API.

Parameters:

id

The ID of the changeset this diff belongs to.

POST data

The OsmChange file data.










	
class osmoapi.OsmChange(changeset)[source]

	OsmChange.

http://wiki.openstreetmap.org/wiki/OsmChange

osmChange is the file format used by osmosis (and osmconvert) to describe
differences between two dumps of OSM data. However, it can also be used as
the basis for anything that needs to represent changes. For example, bulk
uploads/deletes/changes are also changesets and they can also be described
using this format.


	
create_multipolygon(multipolygon, **kwargs)[source]

	Create a Relation:multipolygon.

http://wiki.openstreetmap.org/wiki/Relation:multipolygon

Any area that is complex (e.g., because its outline consists of several
ways joined together, or because the area consists of multiple disjunct
parts, or has holes) requires a multipolygon relation.

A multipolygon relation can have any number of ways in the role outer
(the outline) and any number of ways in the role inner (the holes),
and these must form valid rings to build a multipolygon from.






	
create_node(point, **kwargs)[source]

	Create a Node.

http://wiki.openstreetmap.org/wiki/Node

A node is one of the core elements in the OpenStreetMap data model.
It consists of a single point in space defined by its latitude,
longitude and node id.

Nodes can be used to define standalone point features, but are more
often used to define the shape or “path” of a way.






	
create_way(linestring, **kwargs)[source]

	Create a Way.

http://wiki.openstreetmap.org/wiki/Way

A way is an ordered list of nodes which normally also has at least one
tag or is included within a Relation.
A way can have between 2 and 2,000 nodes. A way can be open or closed.
A closed way is one whose last node on the way is also the first on that
way. A closed way may be interpreted either as a closed polyline,
or an area, or both.






	
etree_element()[source]

	Create a XML representation of this change.












Indices and tables


	Index

	Module Index

	Search Page







          

      

      

    


    
         Copyright 2016, Christian Ledermann.
      Created using Sphinx 1.3.5.
    

  

    
      Navigation

      
        	
          index

        	
          modules |

        	OsmOApi 0.1 documentation 
 
      

    


    
      
          
            

   Python Module Index


   
   o
   


   
     			

     		
       o	

     
       	
       	
       osmoapi	
       

   



          

      

      

    


    
         Copyright 2016, Christian Ledermann.
      Created using Sphinx 1.3.5.
    

  

    
      Navigation

      
        	
          index

        	
          modules |

        	OsmOApi 0.1 documentation 
 
      

    


    
      
          
            

Index



 C
 | D
 | E
 | O
 


C


  	
      
  	ChangeSet (class in osmoapi)
  


      
  	close_changeset() (osmoapi.OSMOAuthAPI method)
  


      
  	create_changeset() (osmoapi.OSMOAuthAPI method)
  


      
  	create_multipolygon() (osmoapi.OsmChange method)
  


  

  	
      
  	create_node() (osmoapi.OsmChange method)
  


      
  	create_note() (osmoapi.OSMOAuthAPI method)
  


      
  	create_way() (osmoapi.OsmChange method)
  


  





D


  	
      
  	diff_upload() (osmoapi.OSMOAuthAPI method)
  


  





E


  	
      
  	etree_element() (osmoapi.ChangeSet method)
  


      	
        
  	(osmoapi.OsmChange method)
  


      


  





O


  	
      
  	OsmChange (class in osmoapi)
  


      
  	osmoapi (module)
  


  

  	
      
  	OSMOAuthAPI (class in osmoapi)
  


  







          

      

      

    


    
         Copyright 2016, Christian Ledermann.
      Created using Sphinx 1.3.5.
    

  search.html


    
      Navigation


      
        		
          index


        		
          modules |


        		OsmOApi 0.1 documentation »

 
      


    


    
      
          
            
  Search


  
  
  
    Please activate JavaScript to enable the search
    functionality.
  


  

  
    From here you can search these documents. Enter your search
    words into the box below and click "search". Note that the search
    function will automatically search for all of the words. Pages
    containing fewer words won't appear in the result list.
  


  
    
    
    
  

  
  
  
  


          

      

      

    


    
        © Copyright 2016, Christian Ledermann.
      Created using Sphinx 1.3.5.
    

  

_static/plus.png





_static/comment-bright.png





_static/ajax-loader.gif





_static/file.png





_static/comment.png





_static/down.png





_static/up-pressed.png





_modules/index.html


    
      Navigation


      
        		
          index


        		
          modules |


        		OsmOApi 0.1 documentation »

 
      


    


    
      
          
            
  All modules for which code is available


		osmoapi






          

      

      

    


    
        © Copyright 2016, Christian Ledermann.
      Created using Sphinx 1.3.5.
    

  

_modules/osmoapi.html


    
      Navigation


      
        		
          index


        		
          modules |


        		OsmOApi 0.1 documentation »


          		Module code »

 
      


    


    
      
          
            
  Source code for osmoapi

# -*- coding: utf-8 -*-

import xml.etree.ElementTree as etree

import pygeoif
from requests_oauthlib import OAuth1Session

TEST_API_URL = 'http://api06.dev.openstreetmap.org/'
LIVE_API_URL = 'http://api.openstreetmap.org/'


class _OsmBaseObject(object):

    """
    Abstract Base Object with common Functionality.
    """

    def append_tags(self, element, **kwargs):
        """Append tags to a XML element."""
        for k, v in kwargs.items():
            tag_element = etree.SubElement(element, 'tag')
            tag_element.set('k', k)
            tag_element.set('v', v)

    def to_string(self):
        """Serialize XML etree element to String."""
        return etree.tostring(
            self.etree_element(),
            encoding='utf-8').decode('UTF-8')


[docs]class OsmChange(_OsmBaseObject):

    """
    **OsmChange.**

    http://wiki.openstreetmap.org/wiki/OsmChange

    osmChange is the file format used by osmosis (and osmconvert) to describe
    differences between two dumps of OSM data. However, it can also be used as
    the basis for anything that needs to represent changes. For example, bulk
    uploads/deletes/changes are also changesets and they can also be described
    using this format.

    """

    def __init__(self, changeset):
        self.nodes = []
        self.ways = []
        self.multipolygons = []
        self.idx = 0
        self.changeset = changeset

[docs]    def create_node(self, point, **kwargs):
        """
        **Create a Node.**

        http://wiki.openstreetmap.org/wiki/Node

        A node is one of the core elements in the OpenStreetMap data model.
        It consists of a single point in space defined by its latitude,
        longitude and node id.

        Nodes can be used to define standalone point features, but are more
        often used to define the shape or "path" of a way.
        """
        self.idx -= 1
        if not isinstance(point, dict):
            point = point.__geo_interface__
        assert point['type'] == 'Point'
        assert point['coordinates']
        lon = str(point['coordinates'][0])
        lat = str(point['coordinates'][1])
        self.nodes.append(dict(id=str(self.idx), lon=lon, lat=lat,
                               tags=dict(**kwargs)))
        return self.idx


[docs]    def create_way(self, linestring, **kwargs):
        """
        **Create a Way.**

        http://wiki.openstreetmap.org/wiki/Way

        A way is an ordered list of nodes which normally also has at least one
        tag or is included within a Relation.
        A way can have between 2 and 2,000 nodes. A way can be open or closed.
        A closed way is one whose last node on the way is also the first on that
        way. A closed way may be interpreted either as a closed polyline,
        or an area, or both.
        """
        if not isinstance(linestring, dict):
            linestring = linestring.__geo_interface__
        assert linestring['type'] == 'LineString' or linestring['type'] == 'LinearRing'
        assert linestring['coordinates']
        nodes = []
        if linestring['coordinates'][0] == linestring['coordinates'][-1]:
            coords = linestring['coordinates'][:-1]
            is_closed = True
        else:
            coords = linestring['coordinates']
            is_closed = False
        for point in (pygeoif.Point(coord) for coord in coords):
            node = self.create_node(point)
            nodes.append(node)
        if is_closed:
            nodes.append(nodes[0])
        self.idx -= 1
        self.ways.append(dict(id=str(self.idx),
                              nodes=nodes,
                              tags=dict(**kwargs)))
        return self.idx


[docs]    def create_multipolygon(self, multipolygon, **kwargs):
        """
        **Create a Relation:multipolygon.**

        http://wiki.openstreetmap.org/wiki/Relation:multipolygon

        Any area that is complex (e.g., because its outline consists of several
        ways joined together, or because the area consists of multiple disjunct
        parts, or has holes) requires a multipolygon relation.

        A multipolygon relation can have any number of ways in the role outer
        (the outline) and any number of ways in the role inner (the holes),
        and these must form valid rings to build a multipolygon from.
        """
        if not isinstance(multipolygon, dict):
            multipolygon = multipolygon.__geo_interface__
        assert multipolygon['type'] == 'MultiPolygon' or multipolygon['type'] == 'Polygon'
        assert multipolygon['coordinates']
        if multipolygon['type'] == 'Polygon':
            polygons = [pygeoif.Polygon(pygeoif.as_shape(multipolygon)), ]
        else:
            polygons = []
            for coords in multipolygon['coordinates']:
                polygons.append(pygeoif.Polygon(coords[0], coords[1:]))
        ways = []
        for polygon in polygons:
            outer = self.create_way(polygon.exterior)
            ways.append(('outer', str(outer)))
            for way in polygon.interiors:
                inner = self.create_way(way)
                ways.append(('inner', str(inner)))
        self.idx -= 1
        self.multipolygons.append(dict(id=str(self.idx),
                                       ways=ways,
                                       tags=dict(**kwargs)))
        return self.idx


[docs]    def etree_element(self):
        """Create a XML representation of this change."""
        root = etree.Element('osmChange')
        create_element = etree.SubElement(root, 'create')
        for node in self.nodes:
            node_element = etree.SubElement(create_element, 'node')
            node_element.set('id', node['id'])
            node_element.set('lat', node['lat'])
            node_element.set('lon', node['lon'])
            node_element.set('changeset', str(self.changeset.id))
            self.append_tags(node_element, **node['tags'])
        for way in self.ways:
            way_element = etree.SubElement(create_element, 'way')
            way_element.set('id', way['id'])
            way_element.set('changeset', str(self.changeset.id))
            for node in way['nodes']:
                node_element = etree.SubElement(way_element, 'nd')
                node_element.set('ref', str(node))
            self.append_tags(way_element, **way['tags'])
        for mp in self.multipolygons:
            rel_element = etree.SubElement(create_element, 'relation')
            rel_element.set('id', mp['id'])
            rel_element.set('changeset', str(self.changeset.id))
            rel_element.set('id', mp['id'])
            for way in mp['ways']:
                member_element = etree.SubElement(rel_element, 'member')
                member_element.set('type', 'way')
                member_element.set('role', way[0])
                member_element.set('ref', way[1])
            self.append_tags(rel_element, **{'type': 'multipolygon'})
            self.append_tags(rel_element, **mp['tags'])
        return root




[docs]class ChangeSet(_OsmBaseObject):

    """
    **Changesets.**

    http://wiki.openstreetmap.org/wiki/API_v0.6#Changesets_2

    To make it easier to identify related changes the concept of changesets
    is introduced. Every modification of the standard OSM elements has to
    reference an open changeset. A changeset may contain tags just like the
    other elements. A recommended tag for changesets is the key `comment=*`
    with a short human readable description of the changes being made in that
    changeset, similar to a commit message in a revision control system. A new
    changeset can be opened at any time and a changeset may referenced from
    multiple API calls. Because of this it can be closed manually as the server
    can't know when one changeset ends and another should begin.
    """

    def __init__(self, id=None,
                 created_by='osmoapi v 0.1', comment='Changes via API',
                 **kwargs):
        """Initialize a changeset."""
        self.id = id
        self.created_by = created_by
        self.comment = comment
        self.kwargs = kwargs

[docs]    def etree_element(self):
        """Create a XML representation of this changeset."""
        root = etree.Element('osm')
        changeset = etree.SubElement(root, 'changeset')
        self.append_tags(changeset, created_by=self.created_by,
                         comment=self.comment)
        self.append_tags(changeset, **self.kwargs)
        return root




[docs]class OSMOAuthAPI(object):

    """OSM API with OAuth."""

    def __init__(self, client_key, client_secret, resource_owner_key,
                 resource_owner_secret, test=True):
        """
        Initialize a OAuth Session on either te test or Live server.

        It takes the OAuth Keys for the Application and current user
        to authenticate to OpenStreetMap, and the test parameter
        to decide if to run on the test or live server
        """
        assert client_key
        assert client_secret
        assert resource_owner_key
        assert resource_owner_secret
        self.session = OAuth1Session(
            client_key,
            client_secret=client_secret,
            resource_owner_key=resource_owner_key,
            resource_owner_secret=resource_owner_secret)
        if test:
            self.url = TEST_API_URL
        else:
            self.url = LIVE_API_URL

[docs]    def create_changeset(self, created_by, comment, **kwargs):
        """
        **Create: PUT /api/0.6/changeset/create.**

        http://wiki.openstreetmap.org/wiki/API_v0.6#Create:_PUT_.2Fapi.2F0.6.2Fchangeset.2Fcreate

        The payload of a changeset creation request has to be one or more
        changeset elements optionally including an arbitrary number of tags.
        Any number of possibly editor-specific, tags are allowed.
        An editor might, for example, automatically include information about
        which background image was used, or even a bit of internal state
        information that will make it easier to revisit the changeset with
        the same editor later, etc.

        Clients should include a `created_by=*` tag.
        Clients are advised to make sure that a `comment=*` is present,
        which the user has entered. It is optional at the moment but this might
        change in later API versions. Clients should not automatically generate
        the comment tag, as this tag is for the end-user to describe their
        changes. Clients may add any other tags as they see fit.
        """
        url = '{0}api/0.6/changeset/create'.format(self.url)
        changeset = ChangeSet(created_by=created_by, comment=comment, **kwargs)
        response = self.session.put(url, data=changeset.to_string())
        if response.status_code == 200:
            changeset.id = int(response.text)
            return changeset
        else:
            response.raise_for_status()


[docs]    def close_changeset(self, changeset):
        """
        **Close: PUT /api/0.6/changeset/#id/close.**

        http://wiki.openstreetmap.org/wiki/API_v0.6#Close:_PUT_.2Fapi.2F0.6.2Fchangeset.2F.23id.2Fclose

        Closes a changeset. A changeset may already have been closed without
        the owner issuing this API call. In this case an error code is returned.

        *Parameters:*

        **id**

        The id of the changeset to close. The user issuing this API call has to
        be the same that created the changeset.

        **Response**

        Nothing is returned upon successful closing of a changeset
        (HTTP status code 200).
        """
        url = '{0}api/0.6/changeset/{1}/close'.format(self.url, changeset.id)
        response = self.session.put(url)
        if response.status_code == 200:
            return True
        else:
            response.raise_for_status()


[docs]    def diff_upload(self, change):
        """
        **Diff upload: POST /api/0.6/changeset/#id/upload.**

        http://wiki.openstreetmap.org/wiki/API_v0.6#Diff_upload:_POST_.2Fapi.2F0.6.2Fchangeset.2F.23id.2Fupload

        With this API call files in the OsmChange format can be uploaded to the
        server. This is guaranteed to be running in a transaction. So either all
        the changes are applied or none.

        To upload an OSC file it has to conform to the OsmChange specification
        with the following differences:

        Each element must carry a changeset and a version attribute, except when
        you are creating an element where the version is not required as the
        server sets that for you. The changeset must be the same as the changeset
        ID being uploaded to.
        A `<delete>` block in the OsmChange document may have an `if-unused`
        attribute (the value of which is ignored). If this attribute is present,
        then the delete operation(s) in this block are conditional and will only
        be executed if the object to be deleted is not used by another object.
        Without the if-unused, such a situation would lead to an error, and the
        whole diff upload would fail.
        OsmChange documents generally have user and uid attributes on each
        element. These are not required in the document uploaded to the API.

        *Parameters:*


        **id**

        The ID of the changeset this diff belongs to.

        **POST data**

        The OsmChange file data.
        """
        url = '{0}api/0.6/changeset/{1}/upload'.format(self.url,
                                                       change.changeset.id)
        response = self.session.post(url, data=change.to_string())
        if response.status_code == 200:
            return response.text
        else:
            response.raise_for_status()


[docs]    def create_note(self, point, text):
        """
        **Create a new note: Create: POST /api/0.6/notes**

        http://wiki.openstreetmap.org/wiki/API_v0.6#Create_a_new_note:_Create:_POST_.2Fapi.2F0.6.2Fnotes

        URL: http://api.openstreetmap.org/api/0.6/notes?lat=51.00&lon=0.1&text=ThisIsANote
        Return type: application/xml

        | Parameter  | Description | Allowed values |
        ---------------------------------------------
        |lat | Specifies the latitude of the bug  | floatingpoint number in degrees |
        |lon | Specifies the longitude of the bug | floatingpoint number in degrees |
        |text  |  A text field with arbitrary text containing the note |

        If the request is made as an authenticated user, the note is associated to that user account.

        Error codes
        HTTP status code 400 (Bad Request)
        if the text field was not present
        HTTP status code 405 (Method Not Allowed)
        If the request is not a HTTP POST request
        HTTP status code 403
        If the user did not authorize your application to create/edit notes.
        """
        if not isinstance(point, dict):
            point = point.__geo_interface__
        assert point['type'] == 'Point'
        assert point['coordinates']
        lon = str(point['coordinates'][0])
        lat = str(point['coordinates'][1])
        params=dict(lat=lat, lon=lon, text=text)
        url = '{0}api/0.6/notes'.format(self.url)
        response = self.session.post(url, params=params)
        if response.status_code != 200:
            response.raise_for_status()







          

      

      

    


    
        © Copyright 2016, Christian Ledermann.
      Created using Sphinx 1.3.5.
    

  

_static/minus.png





_static/comment-close.png





_static/up.png





_static/down-pressed.png





